

Radiant Barriers

Do they make sense in Pennsylvania?

Presented by
Bryan Heitzmann, Training & Edu. Dev. Specialist
&
Mike Turns, Associate Director PHRC

www.engr.psu.edu/phrc

1

Outline

- Introduction
- Radiant Barrier Background
- Areas & Methods of Application
- Summary & Conclusion

)

Introduction

Purpose -

To provide an overview of radiant barriers and how they apply to energy savings in residential construction.

Discussion will include:

How they work

- areas of installation
- Types of radiant barriers
- features/benefits
- Whether or not the application methods make sense
- Whether or not the application methods make sense in PA

Background

What are radiant barriers?

- A thin layer of reflective material
- Reflects heat rather than absorbs it
- Have low emissivity
- RB is applied to one or both sides of a building material
 - -Cardboard

-OSB

-Plywood -Paper

-Plastic

-Bubble packs

Background

Heat travels from warm to cold by a combination of:

Conduction

Heat flow through a substance or material by direct contact

Convection

- Transfer of heat through air (for building enclosures)

Radiation

 Transfer of heat through electromagnetic waves traveling in a gas or vacuum

Background

Reflectivity

 A measure of how much radiant heat is reflected by a material. It is measured by a number between 1 and 0, or as a percentage. The higher the number or percentage, the greater the reflectivity.

Emissivity

 The relative ability of a surface to emit energy (heat) by radiation. It is expressed as a number between 1 and 0 or as a percentage. The higher the number or percentage, the more radiation is emitted.

Background

The radiant barrier is designed to block radiant heat flow between a:

* If radiant barrier is installed next to an air space, the overall assembly can provide an R-Value equivalency for the adjacent space.

10

Background

- A radiant barrier is designed to have a low emissivity (0.1 or less) to reduce thermal radiation and a high reflectivity (0.9 or higher) so heat is reflected away
 - Emissivity + Reflectivity = 1.0

How They Work

- The sun's radiant energy makes the roof hot
- Heat then conducts through the roofing materials to the inside of the attic
- The hot roofing materials then radiate their gained heat onto cooler attic surfaces

12

How They Work

Radiant energy transfer is greatest when:

- Temperatures are high
- Temperature difference is high
- Emissivity is high
- Reflectivity is low

How They Work

- The airspace facing the reflective surface is of primary importance
 - Prevents conductive heat transfer
 - Must have an air space of at least 3/4 of an inch on one or both sides to be effective at blocking radiant heat
- Reflective surfaces become conductive when in contact with a solid surface

14

Radiant Heat Transfer

Radiant heat transfer is proportional to:

- 1. The **absolute temperature** of the surfaces
 - Higher temps means more radiant heat transfer
- 2. The **temperature difference** (ΔT) between two surfaces
 - A greater ΔT means more radiant heat transfer

Radiant Heat Flux

Radiant Heat Flux (W/m²) = Radiant HT Coef x $(T_h - T_c)$

Radiant HT Coef = Emissivity x Stefan-Boltzmann Constant x $[(T_h^2 + T_c^2)(T_h + T_c)]$ (0.1714 x 10⁻⁸ Btu/hr-ft²-R⁴)

T_{h =} Temperature of radiating surface

T_{c =} Temperature of absorbing surface

Hot roof (summer):

 $T_h = 170 \text{ °F} = 630 \text{ Rankine}$ $T_c = 70 \text{ °F} = 530 \text{ Rankine}$

 $RHF_{hot} = 134 (W/m^2)$

Cold wall (winter):

 $T_h = 70 \text{ °F} = 530 \text{ Rankine}$ $T_c = 20 \text{ °F} = 480 \text{ Rankine}$

 $RHF_{cold} = 44 (W/m^2)$

134 / 44 = 3.0

Thus, radiant heat transfer is 3X more important in the hot roof example.

Types of Radiant Barriers

Types of Radiant Barriers

Single-sided foil

- Aluminum foil
- May have a different material backing, such as craft paper or polypropylene
- May be strengthened with a fiber webbing to increase strength and resist tearing

18

Types of Radiant Barriers

Double sided foil

- Reflective foil surface on two sides of a material, such as kraft paper or mesh
- Reinforced by a webbing or weave to increase durability

Types of Radiant Barriers

Bubble products

- Bubble material laminated between two layers of foil
- The bubble pack in the center provides a thermal break
- Claim to help control condensation and moisture

Types of Radiant Barriers

Foil faced products

 Building materials such as OSB, fiberglass batt insulation, foam, with radiant barrier foil attached

R-Value Claims

22

R-Value Claims

- Measure of thermal resistance
 - higher R-Value represents a greater insulating effectiveness
- How can a product as thin as a radiant barrier have such a high R- Value?
 - It Can't
 - Refers to the overall assembly R-Value
 - Includes adjacent building material
 - Includes airspace

R-Value Claims

- The IRC and the IECC reference the FTC R-Value rule requirements for rating the R-Value of insulation materials
 - Includes airspaces with reflective materials
 - Must comply with CFR Title 16 Part 460.5
 - Meet ASHRAE ideal space requirements or
 - Perform ASTM C1363 test

24

Areas of Application in Residential
Construction
&
Do They Make Sense in PA?

Attic Radiant Barriers

Most residential roof systems provide some type of attic airspace to incorporate radiant barrier installation

- Most common application method
- Fairly easy to install
- Can be applied during construction or retrofit of an existing home

29

Attic Radiant Barriers

- There are two truss applications that can be considered when applying radiant barriers in attics
 - Below the truss chords
 - Draped above truss chords
- Deck applied radiant barriers consist of radiant barrier material applied directly to the roof decking

Attic Radiant Barriers

Horizontal radiant barriers

- installed on the top of attic floor insulation
- reflective side must face up towards roof
- perforated to allow moisture to pass through
- allows for dust accumulation and may require maintenance
- cannot use attic for storage

Attic Radiant Barrier

Do They Make Sense In PA?

- Radiant Barriers with Ducts in Attic
- Radiant Barrier vs adding insulation
- Does dust effect Radiant barrier performance?
 - Yes, radiant barrier must remain shiny to work
 - Attic floor application may require maintenance

Do They Make Sense In PA?

Original attic	Insulated and well-sealed ducts			No ducts		
condition	R19 Attic Insulation		Code-level	R19 Attic		Code-level
			Attic	Insulation		Attic
			Insulation			Insulation
Attic system	Add RB,	Add RB	Add RB	Add RB,	Add	Add RB
modification	add			add	RB	
	insulation			insulation		
Miami (1)	\$75	\$50	\$40	\$40	\$20	\$15
Austin (2)	\$110	\$50	\$40	\$60	\$20	\$15
Atlanta (3)	\$100	\$30	\$25	\$55	\$15	\$10
Baltimore (4)	\$170	\$30	\$20	\$120	\$10	\$5
Chicago (5)	\$150	\$20	\$15	\$110	\$5	\$5
Minneapolis (6)	\$180	\$20	\$10	\$140	\$5	\$0
Fargo (7)	\$150	\$15	\$10	\$120	\$0	\$0
Fairbanks (8)	\$210	\$15	\$10	\$180	\$5	\$0

Oak Ridge National Lab

37

Areas Of Application

Radiant Barrier House Wrap

Radiant Barrier House Wrap

- The intent of Radiant Barrier House wrap is to manage radiant heat flow through walls
- They also:
 - Can be vapor permeable to allow drying
 - Add a reflective barrier to the exterior
 - Seal up cracks and gaps in the exterior

Radiant Barrier House Wrap

Furring strips added for siding

43

Radiant Barrier House Wrap

- Use on a wall system with a ¾ inch gap between wall and siding create an R-value equal to R-0.66
 - May keep sheathing temperature higher reducing condensation risk
 - Low emissivity reduces radiant heat flow through wall

Do They Make Sense In PA?

- Must be installed with an air gap
 - Need to use furring strips with siding
 - If no air gap, heat will conduct through wall
 - Requires precise installment
- Creates improved R-Value in airspace
 - Small improvement
 - Claims of R-2?

45

Do They Make Sense In PA?

- Potential moisture problems
 - Acts as effective air barrier
 - Perforated to allow moisture to escape and dry out
- Work more effectively in warmer climate zones
 - Conductive heat gain in winter can be beneficial
 - Daytime solar heat gains in cold climates

Areas of Application

Foil Faced Bubble Wrap

47

Foil Faced Bubble Wrap - Ducts

- Metal HVAC ducts provide no insulation value
- Heat loss from ducts in unconditioned space can be significant
- IRC requirements
 - Supply ducts in attics minimum R-8
 - All other ducts minimum R-6

Outside the thermal envelope

Foil Faced Bubble Wrap – Ducts

- Radiant barrier insulation will assist in stopping the transfer (loss or gain) of radiant heat into or out of your ducts
- Ducts are still required to be sealed and system must be substantially airtight
- Pressure testing of duct system is still required

49

Foil Faced Bubble Wrap – Ducts

- Reflective bubble duct insulation may offer an R-4 to R-8 insulation equivalency depending on the depth of spacer and number of layers
- It is theoretically possible to meet 2009 IRC code requirements for HVAC duct insulation
- Can also be installed around R-4 duct board to increase the R-value and achieve code compliance

Compare with fiberglass duct wrap

Do They Make Sense In PA

- Installation is the key to performance
 - Must incorporate air gap to obtain R-Value
 - Bubble wrap cannot be in contact with the duct
 - Spacers must be used
 - Labor intensive
 - Extra cost
 - Realistic?

51

Do They Make Sense In PA

- R-Value represents complete assembly
 - Not just bubble wrap
- Condensation problems?

Methods of Application

Under Slab

53

Under Slab

- Aluminum foil surfaces with flexible foam or bubble pack core
 - often used with radiant heating tubes
- Placed over gravel & apply concrete on top
 - system does not incorporate an air gap
- Must provide a Class 1 vapor retarder: less than 0.1 perm
- Claim to increase the thermal efficiency
 - Provides only a slight thermal break

Do They Make Sense In Pa

- No airspace when installed under concrete
 - Radiant barrier acts as a conductor, not an insulator
 - Core acts only as a slight thermal break (R-1?)
- Radiant Barrier price **vs** code level vapor retarder
- When used with radiant floor heating tubes, claims exist that foil facing will reflect heat
 - Not true. Only reflects heat if airspace exists

57

Summary & Conclusions

- The radiant barrier is designed to block radiant heat flow between a heat radiating surface and a heat absorbing surface
 - Numerous applications for residential housing
- Must have one air space of at least 3/4 of an inch on one or both sides to be effective at blocking radiant heat
- Be cautious of R-Value claims by manufacturers

Summary & Conclusions

- The use of radiant barriers does help to save energy costs, however:
 - Depends on application method
 - Depends on climate
 - Requires precise installment to be effective
 - Need to determine if the cost of installation is worth it in long-term
 - Minimal savings in Pennsylvania