

Description

Many AC's and heat pumps are installed with faults that impact both their performance and efficiency. Come to this webinar to learn about a new RESNET/ACCA/ANSI standard with three simple field tests that can help a builder ensure they're getting what they've paid for. Not only can this make for happier homeowners, fewer service calls, and lower utility bills, it can also unlock new points for homes with a HERS/ERI rating.

Learning Objectives

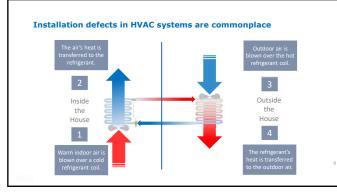
- 1. Understand why HVAC installation faults are commonplace and how they can impact both the efficiency of the equipment and the comfort of occupants.
- Learn about a new RESNET/ACCA/ANSI standard that addresses this problem, including three field tests that can help a builder ensure their HVAC systems are performing properly.
- Learn how this standard is integrated into ANSI/RESNET/ICC 301, the standard that underlies HERS and ERI ratings, which was used to rate over 4,000 homes in Pennsylvania in 2019 alone.
- 4. Understand three ways that this new standard will improve the homes you build.

5

Installation defects in HVAC systems are commonplace

Improper airflow:

- Average airflow ~20% below target. Blasnik et al. (1995)
 Average airflow 720% below design. Proctor (1997)
 Measured airflow ranging from 130 510 CFM / ton. Parker (1997)
 70% of units had airflow < 350 CFM / ton. Neme et al. (1999)
 Improper airflow in 44% of systems. Mowris et al. (2004)


Installation defects in HVAC systems are commonplace



- Incorrect refrigerant charge:
 In 57% of systems. Downey/Proctor (2002)
 In 62% of systems. Proctor (2004)
 In 72% of systems. Mowris et al. (2004)
 In 82% of systems. Proctor (1997)

7

Budy Author	State	Existing or New Home?		Average Airflow		Airfow wile 10% of 400 ton	Energy Savings Potentia	Notes					1			
Ramik et al. 1905a Romik et al. 1905a	NV CA	New New	30 10	345 319	57%		8%	Est @ 33% combined ch	rge/sir f	low corre	ction be	effa				
Rosnik et al. 1996 Rosnik et al. 1996 Hammarkund et al. 1992 Hammarkund et al. 1992	AZ GA	Now New New	10 22 12	319	90% 64% 78%	29% 37% 14%	10% 10%	Est @ 33% combined ch Sincle family needs	rge/sir f	low corre	ction bea	ella .				
Verne et al. 1997	MD	New	25	340	(07)	1475	12%			Existing		Charge			Energy	
Palani et al. 1992 Parker et al. 1997	n.a. Fi	n.a. Both	n.a. 27	270	195		4%			or New	Sample	correct to	% over	% under	Savings	
hador & Pernick 1992		Existing	175	210	44%	7%	10%	Study Aathor	State	Homes?	Size	mig spec	charge	charge	Potentia	i Notes
Proctor 1991	CA.	Existing	15		***	33%		Namk et al. 1965a	w	New	30	35%				
hoctor et al. 1965a		Existing	30	300	80%	11%		Blasnik et al. 19055	GA	Non	30	35%	5%	69%	175	Est @ 67% combined chargelair flow correction benefits
todriguez et al. 1995 todriguez et al. 1995	n.a.	8.8.	n.a.				2%	Glasnik et al. 1996	AZ	New	22	185	15	285	- 25	Est @ 67% combined charge at flow correction baselits Est @ 67% combined charge at flow correction baselits
ECIPEG 1997	na. NJ	n.a. New	n.a. 52	372		305	10%	Farzad & O'Neal 1093	0.8	14	0.8	~ *	**	193		Lab fest of TXV; 8% loss @20% overchip; 2% loss @20% underchip
LIGH DO 1994	114	14914	02	3/2		30%	176	Farzad & O'Neal 1983	0.8	14	6.6				175	Lab test of Ceffor; 13N loss @20% evening; 2% loss @ 20% underchg Lab test of Ceffor; 13N loss @20% evening; 21% loss @ 20% underchg
verage				327	70%	22%	8%	Hammarlund et al. 199		How	12				125	Single family results
								Hammarland et al. 199		Non	66	31%		5%		Multi-family results
								Katz 1997	NC/SC		22	14%		275		Charge measured in 22 systems in 13 homes
								Proctor & Petnick 1992		Existing		44%	39N	23%		Results from PG&E Model Energy Communities Program
								Proctor 1991 Proctor et al. 1995a	CA	Existing		44%				Fresea homes
								Proctor et al. 1995a Proctor et al. 1997a	CA	Existing	30 52	11%	222	50%		
								Podriguez et al. 1965	6.4	D.A.	02				135	Ext @ 47% combined charge air few correction benefits
								Rodriguez et al. 1965	14		0.0				0%	Lob test of TXV EER; 5% loss at both 20% overchg & 20% underchg
								and the local division of the local division			-				105	Lab test of Ortice EER: 7% loss @29% overchg, 22% loss @ 29% underchg
								Average				265	110	41%	125	

ANSI / RESNET / ACCA Std. 310: Overview

- New standard developed to grade the installation quality of HVAC systems ANSI / RESNET / ACCA Std 310.
- Std 310 has been incorporated by reference into ANSI/RESNET/ICC Std 301, allowing properly installed HVAC to get credit in HERS/ERI ratings.
 Primarily designed for raters to use when completing an energy rating:

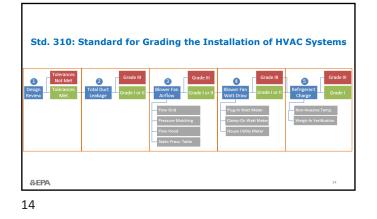
 ~ c 6,600, or 24%, of new homes got an energy rating in Pennsylvania last year
 - Going forward, all rated homes could easily incorporate this HVAC grading standard
- Because the ENERGY STAR single-family new homes program requires an energy rating, it will also benefit.

10

ANSI / RESNET / ACCA Std. 310: Guiding **Principles**

- Take a 'carrot' rather than a 'stick' approach.
- Reward incremental improvement.
- ${\mbox{\cdot}}$ Include procedures applicable to both Rater and HVAC professionals. • Ensure the procedures provide value in and of themselves.

11


ANSI / RESNET / ACCA Std. 310: Grading Concept

Follow the insulation quality-installation model:

- Grade III: The default. No assessment. No penalty and no credit.
- Grade II: Assessment completed and the system is ok. Partial credit. - Grade I: Assessment completed and the system is very good. Full credit.

Task 2: Ev	Task 2: Evaluating total duct leakage							
	· · · · · · · · · · · · · · · · · · ·							
	 Rater measures total duct leakage according to Std. 380, evaluates the results, and assigns a grade: 							
	Grade	Test Stage	# Returns	Total Leakage Limit (CFM per 100 ft ² or Total CFM)				
		Rough-In	< 3	4 or 40 total 6 or 60 total				
	I	Final	< 3 ≥ 3	8 or 80 total 12 or 120 total				
	II	Rough-In	< 3 ≥ 3	6 or 60 total 8 or 80 total				
		Final	< 3 ≥ 3	10 or 100 total 14 or 140 total				
	III	N/A	N/A	No Limit				
2. If Grade I or	r II is ac	hieved, pro	ceed to n	ext task. Otherwise s		18		

Task 3: Evaluating the Blower Fan Volumetric Airflow

- Raters measure the total airflow going through the blower fan using one of four test methods:
- A. Flow Hood
- B. Flow Grid
- C. Pressure MatchingD. OEM Static Pressure Table
- This is just a single measurement. It is not measuring the airflow from each register and summing those.
- The measured airflow is compared to the design airflow. The closer the better. This difference is used to assign Grade I, II, or III.
- If Grade I or II is achieved, proceed to next task. Otherwise stop here

20

Task 3: Evaluating the Blower Fan Volumetric Airflow

A. Flow Hood

- 1. Turn on HVAC system.
- 2. Connect flow hood to return grille.
- 3. Turn on flow hood and allow reading to stabilize. This may require an additional step to account for
- back-pressure.4. Resulting airflow of flow hood determines HVAC airflow.

Pros Cons Accurate: +/- 33% Can be heavy/unwieldy Easy to use Can be sensitive to placement Does not require hole in supply plenum Can be expensive Will not always fit around air inlet

22

Task 3: Evaluating the Blower Fan Volumetric Airflow

B. Flow Grid

- 1. Measure static pressure created in supply plenum during operation of HVAC system.
- 2. Install flow grid in filter slot.
- Measure pressure difference at flow grid and convert to airflow.
- Re-measure static pressure in same location as Step 1, and correct airflow.

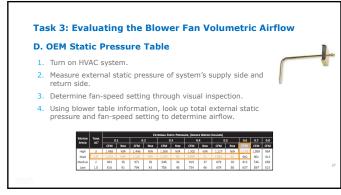
23

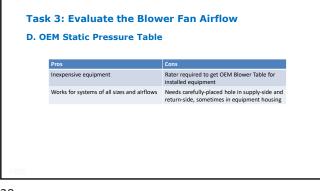
Pros	Cons
Easy/simple for many systems	Multiple filter slots in a single system require multiple flow grids
Can work at higher flows	Need to make sure a good seal is achieved around the plate perimeter
	Slightly less accurate +/- 7%
	Requires hole in supply plenum

Task 3: Evaluating the Blower Fan Volumetric Airflow

C. Pressure Matching

- 1. Measure static pressure created in supply plenum during operation of HVAC system.
- Turn off HVAC system, connect a fan-flowmeter at the return or at the blower fan compartment.
 Turn on the HVAC system and the flowmeter fan and adjust to achieve same static pressure in supply plenum.
- 4. Determine HVAC airflow by recording airflow of flowmeter fan.


ust


25

Task 3: Evaluate the Blower Fan Airflow

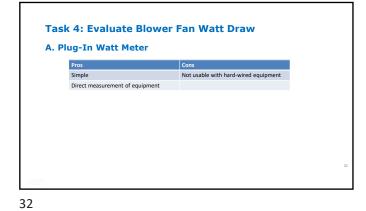
C. Pressure Matching

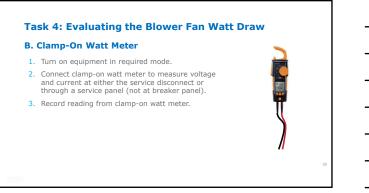
	Cons
Uses equipment many Raters already own	Can't reach high flows for big systems: needs extrapolation
Accurate: +/- 3%	Need at least one large return duct or mu connect at equipment
	Requires hole in supply plenum

Task 4: Evaluating the Blower Fan Watt Draw

 Raters evaluate the watt draw of the blower fan using one of three test methods: A. Plug-In Watt Meter

B. Clamp-On Watt MeterC. Utility Meter


- The airflow and watt draw is used to calculate fan efficiency. The more efficient, the better. This is used to assign Grade I, II, or III.
- Regardless of grade, you can proceed to next task.


Task 4: Evaluating the Blower Fan Watt Draw

A. Plug-In Watt Meter

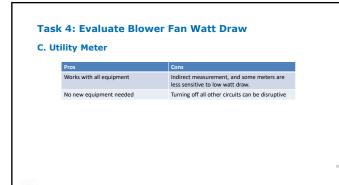
- 1. Plug in the watt meter into standard electrical receptacle.
- 2. Plug in the equipment with the blower fan into the watt meter.
- 3. Turn on equipment in required mode.
- 4. Record reading from portable watt meter.

Task 4: Evaluate Blower Fan Watt Draw

B. Clamp-On Watt Meter

Cons Useable with hardwired equipment that has service panel or service disconnect equipment Direct measurement of equipment

34


Task 4: Evaluating the Blower Fan Watt Draw

C. Utility Meter

- 1. Turn off all circuits except air handler's. 2. Turn on equipment in required mode.
- For a digital utility meter: 3. Record watt draw from utility meter.
- For an analog utility meter:
- For 90+ seconds, record the number of meter revolutions and time.
- 5. Calculate watt draw.

35

_

_

_

37

Task 5: Evaluate Refrigerant Charge

 Raters evaluates the refrigerant charge of the system using one of two test methods:
 A. Non-Invasive Method

B. Weigh-In Verification Method

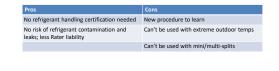
38

Task 5: Evaluate Refrigerant Charge

A. Non-Invasive Method

- 'Non-invasive' means no gauges connected to refrigerant system.
- Instead, the temperature of the air and refrigerant lines are used.
- Triage systems into two bins:
 - Grade I Charge is okay
 - Grade III Charge is not okay

Task 5: Evaluate Refrigerant Charge


A. Non-Invasive Method

- 1. Determine SEER and mfr-specified superheat / subcooling value.
- 2. Measure outdoor air and return air temperatures.
- 3. Use to calculate \underline{target} temperatures for suction line and liquid line.
- 4. Measure actual temperatures for suction line and liquid line.
- Compare <u>target</u> to <u>actual</u> temperatures; if they are close enough, then the system is properly charged.

40

Task 5: Evaluate Refrigerant Charge

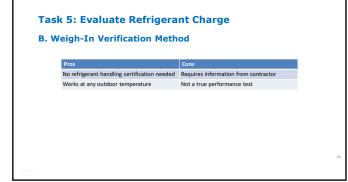
A. Non-Invasive Method

41

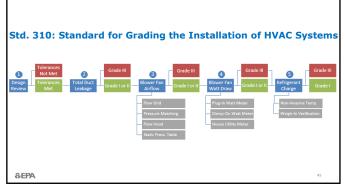
Task 5: Evaluate Refrigerant Charge

B. Weigh-In Verification Method

- The weigh-in verification method can be used year-round and it <u>must</u> be used for:
 Extreme outdoor conditions.


 - Mini/multi-split systems.
- This method is primarily a document review rather than a performance test.

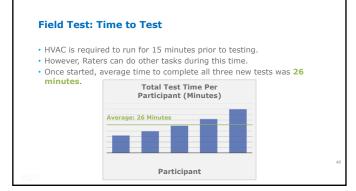
Task 5: Evaluate Refrigerant Charge

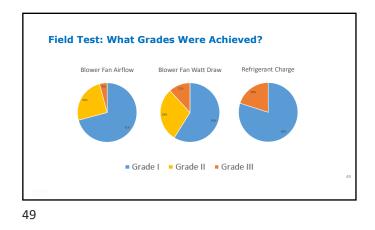

B. Weigh-In Verification Method

- Contractor provides:
 A. Weight of refrigerant added / removed
 - B. Line length and diameter
 - C. Default line length from factory charge (usually 15 feet)
 - D. Factory supplied charge
 - E. Geotagged photo of scale with weight added / removed
- Rater then:
 - 1. Measures line length and diameter
 - 2. Uses lookup table to determine how much refrigerant should have been added / removed
 - 3. Verifies the deviation between the lookup and contractor values are within tolerance
- Verifies location of geotagged photo matches the location of the equipment

43

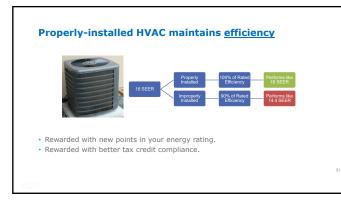
44

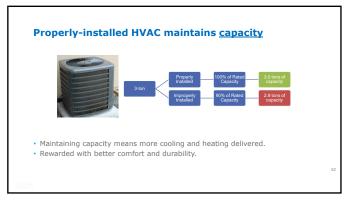


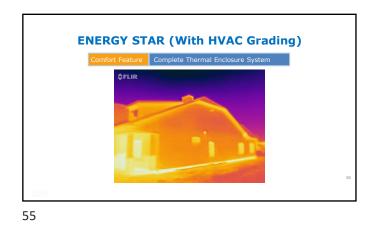

_

46

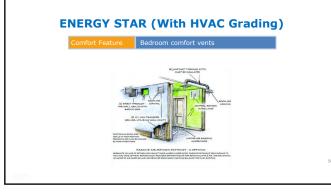
Field Test: Overview


- Select six providers to give field procedures a quick spin:
 18 systems evaluated
- 63 individual tests performedOnly cursory training was provided
- Feedback helped finetune the standard before completion

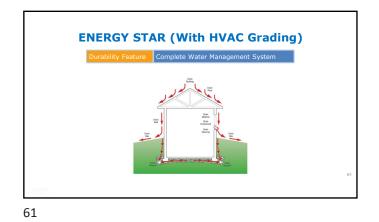


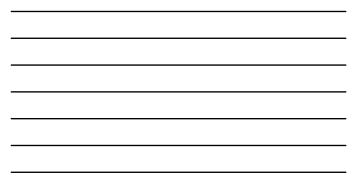


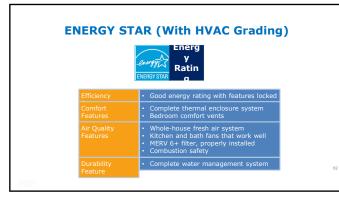
HVAC grading benefits for..

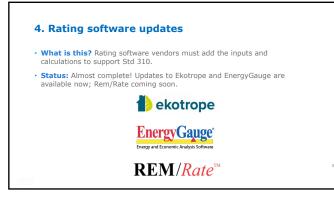

- Builders Energy ratings, tax credit, comfort, durability.
 Raters Valuable new service for any energy rated home.
- Utility Programs Energy and demand benefits.
 HVAC Manufacturers Rewarded for features that ease installation.
- ENERGY STAR Integrates most program requirements into a standard rating.

53









68

Standard 310 can be used today, with the following caveats: Raters and RFI's working under RESNET must complete training and graded field evaluation prior to use.

- graded heid evaluation prior to use. Recommend waiting until the Std. 310 HVAC design report template is integrated into design software for energy ratings. Recommend waiting until ENERGY STAR design report supplement is complete and integrated into design software for ENERGY STAR homes.

Summary

- Installation defects in HVAC systems are commonplace.
- Standard 310 is a new standard for evaluating the design and installation quality of HVAC systems.
- This standard can:
- Improve the performance of your HVAC systems,
- Earn new points in an energy rating and assist with tax credit compliance,
- Make it easier to certify ENERGY STAR single-family new homes.
- To learn more, visit <u>https://www.resnet.us/about/standards/resnet-ansi/</u>:
 Download the standard under 'Approved ANSI/RESNET Standards'
 Download the design report template and an Excel-based tool for using the standard under 'Other Resources' / 'Calculators And Tools'.

