

 The Need for Ventilation
Modern energy codes require tighter enclosures BUT
Reducing natural infiltration limits the amount of fresh air available for occupants
"Build tight - ventilate right"
Perera, E., and L. Parkins. "Build tight-ventilate right." Building Services, CIBSE June (1992).

M1505.4: Whole-House Mechanical Ventilation System

• M1505.4.1 System design. The whole-house ventilation system shall consist of one or more supply or exhaust fans, or a combination of such, and associated ducts and controls. Local exhaust or supply fans are permitted to serve as such a system. Outdoor air ducts connected to the return side of an air handler shall be considered as providing supply ventilation.

Source: International Code Council (ICC). (2017). 2018 International Residential Code, Country Club Hill, III.

17

PHRC

M1505.4: Whole-House Mechanical Ventilation System

Source: In

PHRC

20

						\sim	
			TABLE M150	5.4.3(1)			
CONT	INUOUS WH	OLE-HOUSE MEC	HANICAL VENTIL	ATION SYSTEM AIR	RFLOW RATE REQU	JIREMENTS	
DWELLING UNIT	FLOOR	0-1	2-3	4 - 5	6-7	>7	_
AREA (square t	eet)			Airflow in CFM			
< 1,500		30	45	60	75	90	
1,501 - 3,00	0	45	60	75	90	105	
3,001 - 4,50	0	60	75	90	105	120	
4,501 - 6,00	0	75	90	105	120	135	
6,001 - 7,50	0	90	105	120	135	150	
> 7,500		105	120	135	150	165	
		NTERMITTENT WHO	TABLE M150	.4.3(2) ICAL VENTILATION R	ATE FACTORS		
RUN-TIME PERCENTAGE INEAC SEGMENT	H 4-HOUR	25%	33%	50%	66%	75%	100%
Factor		4	3	2	1.5	1.3	1.0

_				
-				
-				
-				

CONTINUOUS	VHOLE-HOUSE ME	TABLE M15 CHANICAL VENTI	05.4.3(1) LATION SYSTEM AIRFLO	W RATE REQUIRE	MENTS
OWELLING UNIT FLOOR			UMBER OF BEDROOM	s	
AREA (square feet)	0.1	2.5	Airflow in CEM	6-7	>7
< 1.500	30	45	60	75	90
1,501 - 3,000	45	60	75	90	105
3,001 - 4,500	60	75	90	105	120
4,501 - 6,000	75	90	105	120	135
6,001 - 7,500	90	105	120	135	150
> 7,500	105	120	135	150	165

1	0
-	11
_	U
_	_

How a Balanced System Works

- Balanced ventilation systems combine supply and exhaust systems
- Most systems have built-in heat recovery capabilities so that heat is transferred between the exhaust air and the supply air

PHRC

Some systems are also capable of transferring moisture

HRV vs ERV Does it Matter? • ERV's HRV's Transfer both sensible & latent Transfer temperature differential (humidity) heat - sensible heat Aluminum or plastic cores

 Require condensate pan and drain - must be considered

Virtually no latent exchange –

poor summer performance

during installation

Require defrost cycle

- Desiccant wheels or enthalpic plate cores
 - No condensate pans or drains
 - No defrost cycle required
 - Can be installed in any configuration
 - Effective energy exchange in all seasons

40

Soler&Palau

- · Ideal for single and multi-family structures, as well as light-commercial buildings
- Multiple Models
- · Heat and humidity transfer using one static plate G5 core
- 2 High-Efficiency EC motor impellers on (EV Premium and SL75)
- Boost-mode capabilities to further enhance IAQ (EV Premium and SL75)
- Dial-A-Flow controller that allows setting airflow for maximizing comfort
- Indoor Only
- SL75 is replacement for discontinued SL70

52

©2022 Rer

catare matri			3			
EV Premium	S	м	L			
Air Flow Range	30-140 CFM	30-225 CFM	30-280 CFM			
Power Supply		Line Cord				
Fan/Motor	ECM In	ECM Impellers w/ Independent Variable Speed				
Boost Mode		Yes				
Length	22 1/2"	22 1/2"	22 1/2"			
Width	9 1/2"	12 5/8"	23 5/8"			
Height	23 3/4"	23 3/4"	23 3/4"			
Weight	32 lbs.	36 lbs.	52 lbs.			
Mounting		Ceiling Bracket / Wall Bracket				
Filter	MERV 8 (standard)	MERV 8 (standard) / MERV 13 (accessory for supply outside air only)				
Warranty Core / Unit		10 years / 5 years				
Fan Efficiency	1.82 CFM/Watt at 51 CFM (0.2" ESP)	2.10 CFM/Watt at 101 CFM (0.2" ESP)	2.70 CFM/Watt at 121 CFM (0.2" ESP)			
Certifications		HVI & ETL				

EV Premium M @ 120 cfm Unit Accessories and Service Parts No accessories for this unit SUMMER WINTER Outdoor Air Return Air 120 120 93.4 75.0 75.1 62.6 38.4 28.1 101.7 64.7 0.50 0.50 72.8 53.4 53.4 53.4 Fresh Air 120 80.0 68.8 32.9 87.5 Standard Flow Rate S FM Dry Bub *F Enthalpy XH ST Moisture Rato XHR? rains Fresh Air - Edward Static Pressure in 1 ! Exhaust Air - External Static Pressure in 1 ! Total effectiveness % Total effectiveness % Return Air 120 70.0 51.5 Outd Ai Fresh Air 120 13.8 10.2 3.9 3.7 120 54.7 41.1 15.7 16.4 21.0 27.1 0.50 72.8 68.8 68.8 12.7 Lat 1977 907 1069 53.4 53.4 14.2 Lat 3190 [0.3] 1946 [0.2] 1243 [0.1] Load savings ratio % Moisture removed rains Tot 9260 2889 6371 Tot 5574 [0.5] 2595 [0.2] 2979 [0.2] Sen 2385 [0.2] 649 [0.1] 1736 [0.1] Sen 7284 1982 5301 Original load BTUH [Tons] Load with RenewAire BTUH [Tons] Total energy saved BTUH [Tons] Note: Sensible cooling de

ed for

60

Summary

- Mechanical ventilation is required
- There are several different choices available to meet the requirement
- Balanced ventilation provides the best option (?)
- HRV/ERV provides an actual payback on the cost
- ERV's are a better choice where air conditioning and humidity are concerns

PHRC