

Pennsylvania Housing Research Center

- The Pennsylvania Housing Research Center serves the home building industry and the residents of Pennsylvania by improving the quality and affordability of housing.
- quanty and attordability of housing.
 We conduct applied research, foster the development and commercialization of innovative technologies, and transfer appropriate technologies to the housing community.
 The PHRC is housed within the Department of Civil & Environmental Engineering at Penn State. For more information about the PHRC (publications, webinars, conferences), check out our website, phrc.psu.edu.

Description

The Passive House design standard is a voluntary above code program for both new construction and retrofits that focuses on significantly reducing a home's energy usage. Primary design principles involved in this standard are continuous insulation, strict air tightness limits, reduction of thermal bridging, and a focus on thermal comfort via balanced ventilation and heat recovery, resulting in homes that can use up to 90% less energy than a conventional home.

This webinar will provide an introduction of this standard for Pennsylvania's residential construction industry, including an overview of the international Passive House standard (PHI) and the Passive House Institute of the US (PHIUS) standard, the design principles behind each of them, and details on Pennsylvania case studies built to these standards. It will also include an overview of the certification process for the homes, as well as Passive House designers, builders, raters, and verifiers, to inform the residential construction industry of the logistics of building to the Passive House standard

Learning Objectives

- 1.
- Gain insight into the energy reduction and comfort principles and requirements of each Passive House standard Review the general design and building science details of each standard for significant building energy reductions and increased occupancy comfort and safety Review Pennsylvania case study homes built to these standards and which have the thermal comfort and indoor air quality provisions set out by the standard Understand the PHIUS certification process for homes, as well as designers, builders, raters, and verifiers, to know how to enter the Passive House industry 2.
- 3.
- 4.

Code Change: 50+ Speaking Engagements!

Brief Introduction to Passive Buildings

· Passive Buildings

- Superinsulated
- Maximize Gains, Minimize Losses
- **NOT Passive Solar Design**

• NOT Passive Solar Design • "Mass and Glass"

4

High Insulation:	High R-Values +	Continuous
------------------	-----------------	------------

Fresh Air
]

- 1. Optimized solar orientation
- 2. High Insulation
- 3. High Performance Windows
- 4. Airtight Construction 5. Balanced Ventilation

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><complex-block>

<section-header><section-header><list-item><list-item>

7

Overview of Passive Buildings Introduction to Passive Buildings History of Passive Buildings

- History of Passive Buildings General Characteristics of Passive Homes
- Benefits of Passive Homes
- Costs of Passive Homes

15 minute introductions to the:

PHI - International Passive House Institute Standard
 PHIUS - Passive House Institute of the US Standard

A standard A standard

PHI Standard: Basics...a comfort standard

PHI Standard: Tools of Certification

- **PHI Trained & Certified** Professionals - Designer/Consultant (CPHD/C) - Tradesperson (CPHT) - Energy Modeler - Certifier
- Energy Model Software Passive House Planning Package (PHPP)

PHI Standard: Tools of Certification -Variants for future changes

Variants in PHPP

- Future Climate Data -Usage pattern changes
- -
- Component upgrades Future system updates -

PHI Standard: Tools of Certification -**Community of Certifiers** ULLAN CERTIFICAN CORPORE Passive House Institute - building.certification@passiv.de info@passivehouse.ca <u>Peel Passive House Consulting</u> info@peelpassivehouse.ca <u>RDH</u> CertiPHiers Cooperative LertIPHIErs Cooperative info@certiphiers.com <u>Herz-Lang,</u> ryan.conor@herz-lang.com <u>MEAD Ltd.</u> RDH mpaulsen@rdh.com Steven Winter Associates.Inc. larena@swinter.com Stich Consulting & Design info@stichpassivedesign.com ZEPHIR Passivhaus Italia MEAD Ltd. enquiries@meadconsulting.co.uk MIZU Passive House Consulting welcome@mizupassivehouse.com Passive House Academy - edel@passivehouseacademv.com - f.nesi@zephir.ph CertiPHiers. 30

1. Passive House Standard Performance

Case Study: Philadelphia Passive House

PHRC

PHIUS Standard: Landscape

. 650+ submitted and certified projects in North America
205 fully certified projects

PHIUS Standard: Basics

PHIUS+ 2018

.

- Fully enforced as of April 1, 2019 Currently on Version 2.1 | June 2019

PHIUS Standard: Basics

• PHIUS+ 2018

- IUS+ 2018
 Fully enforced as of April 1, 2019
 Currently on Version 2.1 | June 2019
 Builds on groundwork laid with PHIUS+ 2015 standard
 Developed with the Building Science Corporation under a Department of Energy Building America Program grant in 2014
 PHIUS+ 2015 standard marked the distinction between PHI and PHIUS standards
- PHIUS plans to update standard every three years (2021, 2024, etc.)

Effective	2007	2013	2015	2015	2016	2017	2017	2018	2018	2019
Date	1-Jan	1-Jan	1.Har	15-5ep	1-Jan	1-Har	1.5ep	1.84	1-011	1.Apr
Space Conditioning Performance Reg. Source Energy Reg.	PHILS	PHRUS CHE SHE		PH825+ 2215			PH8,5 / Ph 21	- 2015 8,5- 18	PH825 2018	
Single Family On Site	PHILS Work- Sheet		Pre	US= +3.0.			-	4.0		4.1
Multifamily On Site QA/QC		Case	by-case		+2.0		+2.1			2.2

PHIUS Standard: Tools of Certification Trained Professionals Certified Passive House: Consultant Builder Rater Verifier PHIUS organization

• Software

PHIUS Standard: Tools of Certification

PHIUS+ 2018: Performance Requirements

PHIUS+ 2018: Performance Requirements

PHIUS+ 2018: Space Conditioning Requirements

Peak and annual heating and cooling usage limits based on:

- Climate
- Location
- Building size (new for PHIUS+ 2018)
- Occupant density (new for PHIUS+ 2018)

PHIUS+ 2018: Spec	ific Locatio	on P	erfc	ormance	Tai	gets		
At start of design: Estimated Targets	Lancaster, PA (CZ5)		Erie, PA (CZ5)				
	PHIUS+ Space Conditioning	PHIUS+ 2018 Space Conditioning Criteria Calculator			PHIUS+ 2018 Space Conditioning Criteria Calculator			
Estimator Method -	METHOD: UNITS:	ESTIMATO	ж • (IP) •	METHOD: UNITS:	ESTIMAT	ror • L (IP) •		
Location -	STATE / PROVINCE	PENNSYLVAN	• •	STATE / PROVINCE CITY	PENNEYCH ERE NTER	NA ·		
1. Floor Area 2. Total Occupancy	Floor area (IP) 2,40 Total Occupancy 4	a attaites a attaites	2400	Floor area (IP) 2,40 Total Occupancy 4	0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2400		
Output:	Estimator method a used to approximate fo	way despt. nat for	frai cestication larg	Catinator method a used to approximate to	r early design, not name Galaxia	ter final certification targ		
Estimated _ Space Conditioning Criteria	Annual Heating Demand Annual Cooling Demand Peak Heating Load Peak Cooling Load	9.0 7.2 6.8 3.8	KSTURY KSTURY STURY STURY STURY	Annual Heating Demand Annual Cooling Demand Peak Heating Load Peak Cooling Load	57 64 53 35	KBTURYY KBTURYY BTURYY BTURYY		
	Typed antry will swende kilding scale. The results of the CALCULATOR method ter method.	a precadence o-er D	w ESTIMATOR	Typed arthy will override sliding scale The results of the CALCULATOR method tai method	ia precadance over	the ESTIMATOR		

3. Airtightness Requirements

PHIUS+ 2018: Prescriptive Requirements

PHIUS+ 2018: Prescriptive Requirements

Molsture Design Ortiteria Cirnate Appropriate Well & Roof Assemblies Thermal Bridge Mold Risk Assessment Window Comfort & Condensation Risk Assessment QA/QC for Designer: Prescriptive Design Elements Envelope, Heating & Cooling, Water Management, etc. Whole House Ventilation Third Party Standard Requirements QA/QC for Rater/Verifier: Field Inspections	<section-header><section-header><section-header><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></section-header></section-header></section-header>
	Uncer a significant and Add's excluded in man as insighted arranges activated angle A constants will also gave any a gave and a single and the many in loss for the to an and MAC as a significant and a single activation of the single activation of the single single for bottom and and the collabolity of the single activation of the single single for the single activation of the single activation of the single activation of the single for the single activation of the single activation of the single activation of the single for the single activation of the single bottom of the single activation of the single for

PHIUS+ 2018: Prescriptive Requirements

Moisture Design Criteria
 Cimate Appropriate Wall & Roof Assemblies
 Thermal Bridge Mold Risk Assessment
 Second Bridge Mold Risk Assessment
 Constant Area (Internet)
 Constant Area (Internet)

PHIUS+ 2018: F	Prescriptive	Requirements
----------------	--------------	--------------

 1. Moisture Design Criteria
 Soft 2.00 Mm

 a. Climate-Appropriate Walk Roof Assemblies
 Marked Roof Assemblies

 b. Ministeria
 Marked Roof Assemblies

 b. Ministeria
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Standard Roof Assemblies
 Marked Roof Assemblies

 c. Third Party Sta

			-

PHIUS+	201	8:	D	esign R	ecomn	ienċ	latio	ons	5
Sample R	-Val	ue	Guio	delines	<u>Exam</u>	ole Wi	indov	v St	becs
Samula B. Value Guidelines**				Infra Bannar	Climate-by-Climate R	ecommendations fo	r Window Perfor	mance	
Example Oties	Zana	wat	Colling	Sab	ASHRAE/IECC/DOE North American Climate Zone	Overall installed window U-value Btu/h #2 F	Center-of-plass U-value Rou/b ft2.F	SHGC -	SHGC - North, Fast, West
Mami, FL, Honolulu, H	1	19 - 27	44 - 60	2t R-8 vertical perim	8	\$0.11	\$0.10	≥0.50	Any
Jacksonville, FL: Phoenix, AZ	2	19-27	30 - 70	uninsulated	7	≤0.12	≤0.11	≥0.50	Any
Charleston, SC: Sacramento, CA	3	15-31	30 - 60	uninsulated or 28 R-8 vertical perim	6	\$0.13	\$0.12	20.50	Any
San Francisco, CA	Marine 3	19-23	30 - 38	4t R 8-20 vertical perim	4	\$0.15	\$0.14	>0.50	<0.40
Baltmore, MD: Amarilo, TX	4	31-51	49 - 80	2-41.R 8-20 vertical perim	Marine North	≤0.16	\$0.15	≥0.50	\$0.40
Salem, OR; Seattle, ViA	Marine 4	31 - 43	60 - 70	48.R-20 vertical perim	Marine South	≰0.22	\$0.20	\$0.50	.≤0.30
				ARR-10 united ratio	3	\$0.18	\$0,16	\$0.50	≤0.30
Providence, RI, Plegstaf, AZ	*	31-43	60 - 70	or vitole-slab R-20	2 West	≤0.18		≤0.30	≤0.30
Burington, VT: Billinga, MT	6	29-51	70 - 90	vhole-slab R20-28	2 East	\$0.20	\$0.18	≤0.30	≤0.30
Duketh, MN, Edmonton, AB	7	49-65	80 - 90	vhole-slab R28-40	In the criteria table an from the IECC map at	d on the data label, follows:	the climate zone	labels diffe	r slightly
Partenia, AK		89	120	whole-slab R-40	 2 East = 2A 2 Minut = 28 				

trom the IECC map as folio 2 East = 2A 2 West = 28 Marine North = 4C Marine South = 3C

Generated fro Pertains main Actual R-value

Case Study: Scranton Pa	assiv	e House	R P A	SCRANTON PASSIVE HOUSE
on Passive House	SCRANTON PROJECT INFORM Locaton Stop Climate Zone HERS Cost Monitoring PASSIVE HOUSE I Annual Heat Dema Heat Load Primary Energy Alt Tightness Treated Foor Area	PASSIVE HOUSE MAIN Scantor, Pi, 2:35 pit ProPrintEXMATE PAPPREXMATE PAPPREXMATE PAPPREXMATE A 2:35 pit(#727K) 0:47 ACH @ 50 pit 1.55 pit	DATA MECHANCAL SYSTEMS Veritation Heating & Cooling Dometic Hell Wilter RAPA PASSIE ENDUSE IM Enviros Areas to TAN Enviros Areas to Tanan Enviros Areas to Tanan Enviros Areas to Tanan	Renewaire ERV Misubush ASHP GE HWHP DRPHOLOGY 3 3 14% 47% 352
	Floor F Walls F Roof F	SPECIFICATIONS 1=76 Stab on Grade 1=61 2x4 Wall + TJI 1=85 Raised Heel Energy Th	55	

-		

_

_

Scranton Case Study: Resources

www.richardpedranti.com/projects/scranton-passive-house/

2015 North American Passive House Conference Presentation www.phius.org/NAPHC2015/oedranti-PH-CASE-STUDYreduced.pdf

27

