PHRC Webinar Series Tuesday, December 12th @ 1pm	
Radiant Floor Heating	
Chris Hine Housing and Land Development Specialist	
Pennsylvania Housing Research Center 206B Sackett Building University Park, PA 1562 206B Sackett Building University Park, PA 1564-565-2341	
phr@psu.edu www.PHRC.psu.edu	
CARCAD.	
NAR PETERBED EDUCATION PHRC	
Protect # 4511155	
Description	
Description	
 The design of a radiant floor heating system goes beyond just heat calculations. The structure itself must be examined and correct materials 	
must be used with this type of heat. This webinar will look into material compatibilities when installing radiant floor heat along with simple design	
methods.	
Sandy.	
2 PART	
Learning Objectives	
Review the compatibility of materials for the installation of radiant floor heat.	
Review the construction limitation for installing radiant floor heat.	
Understand the how radiant floor heating can impact the finish materials and potentially cause occupant discomfort	
Review standard installation procedures which can formulate an outcome	
that will be comfortable to the occupant	
av.	
Legal Co. Co.	

Outline

- What is radiant floor heat?
- General code requirements for radiant floor heating
- Types of radiant heating
- Common compatibility issues

PH RE

What is Radiant Floor Heating?

Next let's take a look at how heat travels: Heat flows from warmer to cooler until there is no longer a temperature difference.

• Q = U x A x △T - Q = heat flow (Btu / hr) - U = thermal conductivity (U = 1 / R) - A = surface area (square feet) - △T = temperature difference across component (°F)

Conductive Heat Loss • Can you stop heat flow? Q = ∪ X A X △T - Answer: No • Conductive heat flow can be managed, but not eliminated

_				 		 _				
I V	V/ I	ovem	0.10		0.0	 Ю	- н		001	
	741		12161					 _		Ľ

First the boiler system must uses conduction to quickly and efficiently heat the water.

Movement of Heat in Radiant Floors

 Next the hot liquid being pumped throughout the house heats the concrete, tile, or other type of flooring through conduction as well as radiates heat into the room.

Source: lowtechmagazine.com

Movement of Heat in Radiant Floors

 Lastly, the flooring surfaces then radiate the heat they gained from the hydronic system into the room.

Source: lowtechmagazine.co

Comparison of air movement in a room with forced air and radiant heating Radiant Floor Heating

This is Why Materials Matter

- Finished floor materials should take thermal mass and thermal resistance into account as well as aesthetics.
 - $\,-\,$ Thermal Mass The ability of the material to absorb and retain heat.
 - Thermal Resistance The rate at which a material transfers heat through conduction.
- The goal for an efficient radiant system is to choose materials
 that have:
 - High thermal mass
 - Low thermal resistance

This is Why Materia	ıls Matter
Vinyl Flooring	Source: houseunderconstruction.com

Construction materials Insulation Subfloor Concrete Location Above the subfloor Below the subfloor Slab on grade Ceiling

Slab Insulation Table N1102.1 out of the 2009 IRC Slab R-value and depth Zone 4 & 5 - R-10 for 2ft Zone 6 - R-10 for 4ft Footnote d R-5 shall be added to the required slab edge R-values for heated slabs.

CLIMATE ZONE	FENESTRATION UFACTOR	SKYLIGHT [®] U-FACTOR	GLAZED FENESTRATION SHGC	CEILING R-VALUE	WOOD FRAME WALL R-VALUE	MASS WALL R-VALUE*	FLOOR R-VALUE	BASEMENT ^C WALL R-VALUE	SLAB [®] R-VALUE AND DEPTH	SPACES WALL R-VALUE
-1	1.2	0.75	0.35	30	13	3/4	13	0	0	0
2	0.65	0.75	0.35	30	13	4/6	13	0	0	0
3	0.50	0.65	0.351	30	13	5/8	19	5/13	0	5/13
4 except Marine	0.35	0.60	NR	38	13	5/10	19	10/13	10, 2 ft	10/13
5 and Marine 4	0.35	0.60	NR	38	20 or 13 + 5 ^h	13/17	30	10/13	10. 2 n	10/13
6	0.35	0.60	NR	49	20 or 13 + 5 ^h	15/19	30#	10/13	10, 4 ft	10/13
7 and 8	0.35	0.60	NR	49	21	19/21	30s	10/13	10, 4 n	10/13
R-value is	re minimums. U-far reduced by R-1 or ration U-factor col-	more shall be	marked with the o	ompressed by	att # value in	addition to the	e full thickne	to nominal 2 = 6 ms R value.		such that t
R-value is The fenest Du foot & R-5 shall it through 3: There are : Basement Or insulati "13+5" ms structurals R-2. For impact For impact	er minimum. U-far reduced by R-1 or reduced by R-1 or ration U-factor col- ter and the requirem wall insulation is n ton sufficient to fill reass R-13 cavity in- theuthing is used. If the cated fenestration or essistant fenestration of R-value accilies w	more shall be autin excludes usined slab edg sents in the M not required in it the framing o sulation plus I structural she is complying with a complying with a	e marked with the c skylights. The Sal- date. He seed to be a see R-values for heat cartrix Zone. I warm humid local cartry, R-19 minima R-5 insulated sheat sibling covers more with Section R301.2 g with Section R30.	ompressed b GC column a red shibs. Insu- tions as defin- um. hing. If structs than 25% of e 1.1.2, the man DI 2.1.2 of th	att R-value in applies to all a dation depth and by Figure aral sheathing exterior, struc- ditmum U-facts a futernation	addition to the glazed fenests: shall be the de N1101.2 and g covers 25% or oural sheathing or shall be 0.7	e full thickneation. pth of the fo Table N1101 or less of the c phall be supp 5 in zone 2 a	oting or 2 feet. 2. exterior, R-5 shalemented with a	6 framing cavity whichever is le eathing is not re insulated sheat	ss, in zones

Hydronic Piping

- M2103.1.1 Slab on grade installation. Radiant piping used in slab-on-grade applications shall have insulating materials having a minimum R-value of R-5 installed beneath the piping
- M2103.2.2 Suspended floor installation. In suspended floor applications, insulation shall be installed in the joist bay cavity serving the heated space above and shall consist of materials having a minimum R-value of R-11

How to Achieve Insulation Values?

 Rigid foam is one of the easier ways to accomplish the sub slab insulation requirements.

Reflective Insulation?

- Be careful of installation details.
- Review ICC-ES report to ensure printed details are also part of the documented ICC-ES report

 Source: bornworld.com

 Source: bornworld.com

 The control of the document o

• Some manufacturers recognize the importance of an airspace.

Note regarding R-Values: RaduerGUAGD bubble insulations can provide R-Values as high as R-17, however, the R-value is complete dependent on where and how the product is installed. Any bubble insulation that is approximately 1% thick can QNLY achieve an average r-value of 1 to 1.5 on its som. Any additional R-value is achieved by the use of DEAD air spaces around the reflective product or in used in conjunction with other mass insulation products like fiberglass, foam, etc. Source: radiostepard.com

Types of Radiant Floor Heating

PHRC

Electric Radiant Floors

 Electric radiant floors are usually installed within the thermal mass of the flooring. In most cases, this means it will be installed between the subfloor / concrete floor and the finished flooring material.

Course and anterofessional alliance are

Electric Radiant Floors

- Electric radiant floors typically are not used to "heat" the space, but used as a secondary system to focus on specific areas of the home. (Floor Warming)
- This is why electric radiant floors are more commonly found in bathrooms but this does not mean it can't be designed as a whole house heating system.
- Another electric system would include an electric ceiling radiant heating system

Hydronic Radiant Floors

- Potentially one of the more popular forms of radiant floor heating systems and arguably one of the most efficient.
- There are several types of systems to choose from:
 - Underfloor Radiant Loops

Hydronic Radiant Floors

- Potentially one of the more popular forms of radiant floor heating systems and arguably one of the most efficient.
- There are several types of systems to choose from:
 - Baseboard Heaters / Radiators

Hydronic Radiant Systems

- Potentially one of the more popular forms of radiant floor heating systems and arguably one of the most efficient.
- There are several types of systems to choose from:
 - Radiant Wall Systems

Material Compatibility issues

- Material compatibility must be at the top of the list when designing a radiant heating <u>system</u>.
- Items to consider when choosing a finished flooring material to be installed over a radiant system:
 - Thermal conductivity of the flooring material
 - Moisture content of the flooring material
 - Temperature limitation of the flooring material
 - Furniture type and placement

Carpet as a Finished Floor

- Carpet can be considered an insulator over a radiant heating system.
- Example conducted by the Georgia Institute of Technology School of Textile Engineering:
 - 24 oz. Plush carpet had an R-value of R-1.12
 - $-\,$ Bonded Polyurethane 4lb padding had an R-value of R-2.09
 - Total R-value of R-3.21
 - Equivalent to over ½" of XPS

Vinyl as a Finished Floor

- Some types of vinyl floors can be installed over a radiant floor:
 - Luxury Vinyl Flooring (LVF)
 - Luxury vinyl planks (LVP)
 - Luxury vinyl tile (LVT)
- · Vinyl products that may need special attention
 - Vinyl sheet material that must be glued in place. Off-gassing of the adhesives may occur.

3/4" Solid Hardwood as a Finished Floor

- Because %" hardwood is a natural material, it is subject to movement based on the environment in which it is installed.
- Solid hardwood, if installed over a radiant heated floor, should be quartersawn, narrow planks should be selected. This has the greatest chance to resist horizontal expansion and distortion.
- The surface temperature of the subfloor should not exceed 80°.
- Most if not all hardwood floor manufacturers will not warranty hardwood installed over a radiant floor heating system.

Floating Engineered Hardwood as a Finished Floor

- Due to the product's engineered design, it can be more forgiving to the introduction of heat and moisture.
- Because a floating floor is not nailed to the subfloor, but instead locked together, it allows the whole floor to move as a single unit if a dimensional change within the wood floor takes place.
- Most manufacturers of engineered floating floors provide a warranty for installations over radiant systems (with the possible exceptions of their Maple and Brazilian Cherry species)

Source: hoskinghardwood.com

Tile or Stone as a Finished Floor

- Due to the thermal mass and thin profile, tile and stone can be one of the best flooring materials for the transfer of heat
- These materials are highly conductive which can lead to a more effective system

Furniture and Trapped Heat • What is trapped heat? • Heated mat placed over a laminate floor for 30 minutes Avg = 114 2 Avg = 85.1

Furniture and Trapped Heat

- Never install radiant heating under permanent fixtures
- Ensure there is a minimum 2-3 inches between the floor covering and the underside of the furniture
- Avoid placing furniture such as bookcases, closed-bottom furniture and stands that have shape points as feet over a radiant floor system
- The goal is to allow free movement of air as to reduce hot spots or trapped heat

Summary

- · Radiant floor heating can be an efficient way to heat a home
- Proper insulation must be installed to promote heat flow in the desired direction
- Flooring materials must be chosen to reduce an insulating type reaction
- The compatibility of flooring materials must also be taken into consideration when installing a radiant floor heating system
- The type and placement of furniture must be taken into consideration when using a radiant floor heating system

