Where to Draw the Line with Thermal Boundaries

Christopher Hine | Housing and Land Development Specialist

Description

- A Thermal Boundary is a term used to describe when flow of heat is restricted or slowed which is accomplished through insulation and a continuous air barrier. This one hour webinar will start off by discussing the definition of a thermal boundary in regards to residential construction. Next, a brief plan review will be completed showing key elements and requirements of the thermal boundary along with applying the “pen test” on a house cross section. The webinar will finish up by reviewing code and above code check lists to ensure the thermal boundary is compliant at both the plan review stage and during construction. At the end of this webinar, one will know how to identify, inspect and properly construct a durable and effective thermal boundary.

Learning Objectives

- Understand how to locate the thermal boundary and ensure that it is continuous by reviewing the construction documents, in particular; the cross section.
- Understand why proper construction of a thermal boundary is important to the health of not just the building assembly, but also the occupants.
- Understand the economic impact of a properly constructed thermal boundary through the reduction of heating and cooling costs.
- Recognize the code compliance paths. This will be delivered through reviewing construction documents along with pictures taken throughout the construction process.
Outline

• What is a Thermal Boundary?
• What components make up a Thermal Boundary?
• Pen Test
• Summary

What is a Thermal Boundary?

• A thermal boundary is not one specific stand-alone component in the building system. The thermal boundary is a system that composes the separation assembly from a conditioned area to an unconditioned area. To be effective, a thermal boundary must include two key components:
 – Water Barrier
 – Air Barrier
 – Thermal Barrier

The successful Thermal Boundary

• A thermal boundary can not work with one independent building material. It is an assembly and can only perform to its greatest potential if it is constructed as such.
An air barrier is any material that restricts the flow of air through a construction assembly. In wall assemblies, the exterior air barrier is typically a combination of sheathing and either housewrap, rigid insulation, drywall or spray foam.
An air barrier is any material that restricts the flow of air through a construction assembly. In wall assemblies, the exterior air barrier is typically a combination of sheathing and either housewrap, rigid insulation, drywall or spray foam.
An air barrier is any material that restricts the flow of air through a construction assembly. In wall assemblies, the exterior air barrier is typically a combination of sheathing and either housewrap, rigid insulation, drywall or spray foam.
Air Barrier

- An air barrier is any material that restricts the flow of air through a construction assembly. In wall assemblies, the exterior air barrier is typically a combination of sheathing and either housewrap, rigid insulation, drywall or spray foam. Closed cell spray foam is typically used in a flash and batt situation where both spray foam and fiberglass batt insulation are both used to fill the stud cavity. Open cell can also be used as an air barrier, provided the correct thickness is used per the manufacturers installation instructions.

Thermal Barrier

- A thermal barrier slows the flow of heat. This is usually accomplished with insulation. Insulation comes in several different materials such as fiberglass, mineral wool and cellulose and is applied in ways such as batts, blown-in, spray foam and rigid foam.
The difference between air barrier and thermal barrier and why both are needed for an adequate thermal boundary.
• Thermal Alignment
 — Regardless of which material and application is used, insulation is not fully effective unless it is installed properly. This means it must be fully aligned with a continuous air barrier.
 — This means that it should be encapsulated on all 6 sides to be most effective.
 • Exception:
 — Attic insulation
 — Band joint insulation

Key to a successful Thermal Boundary

Water Barrier

Photo courtesy of www.certainteed.com
Water Barrier

• First line of defense for water intrusion is the exterior cladding.

Water Barrier

• Second line of defense for water intrusion can be the water-resistant barrier. This can be installed as a system using housewrap or rigid foam and flashing details.
The Pen Test

- The Pen Test is an exercise that helps point out potential areas of concern within the thermal boundary. This is a simple test where you examine a building section and trace the control layers for Water Barrier, Thermal Barrier and Air Barrier. If at any point you have a disruption, you may have a flaw in your design. The pen test can also be a tool where you can translate critical areas of concern to contractors to ensure proper installation.
Exterior wall

- The thermal boundary in an exterior wall:
 - Bulk water
 - Cladding
 - Water-resistive barrier
 - Flashing
 - Heat
 - Insulation
 - Thermal Alignment
 - Mechanicals
 - Air infiltration
 - Air barrier
 - Penetrations
 - Flashing

Cladding

Water-resistive barrier and Penetrations
Insulation: Full alignment

- What happens if the insulation is not fully aligned?

![Diagram showing warm air rising and cool air falling. It is called a convective loop. What happens to the efficiency of the insulation?](Image from Oikos.com)

Insulation: Free of voids and gaps

- Insulation should fill the entire cavity.

 ![Diagram of insulation filling the cavity and being tight-fitting around electrical boxes.](Image from Oikos.com)

Insulation: Free of compression

- Insulation should be free of compression caused by obstructions in the stud bay.

 ![Diagram indicating free of compression.](Image from Oikos.com)
Attic floor / Conditioned space ceiling

- The thermal boundary in an attic floor / conditioned space ceiling:
 - Bulk water
 - Roofing system / Shingles
 - Underlayment / ice & water shield
 - Flashing
 - Heat
 - Insulation
 - Thermal Alignment
 - Air infiltration
 - Air barrier
 - Penetrations

Roofing System: Shingles, felt paper & flashing

Attic floor: Insulation
Attic floor: Air barrier / Penetrations

Conditioned attic: Insulation

Exterior wall / Rim Joist

- The thermal boundary at the Rim Joist:
 - Bulk water
 - Cladding
 - Water-resistant barrier
 - Heat
 - Insulation
 - Thermal Alignment
 - Air infiltration
 - Air barrier
 - Penetrations
 - Framing joints
Rim joist insulation

Exterior: Joist cantilever

- The thermal boundary at Joist Cantilever:
 - Bulk water
 - Soffit
 - Continuous Water-resistant barrier
 - Heat
 - Insulation
 - Thermal Alignment
 - Air infiltration
 - Air barrier
 - Penetrations
 - Flashing

Air barrier: Cantilever
Cantilever

Exterior wall / Rim Joist

- The thermal boundary at the Rim Joist:
 - Bulk water
 - Cladding
 - Water-resistive barrier
 - Heat
 - Insulation
 - Thermal Alignment
 - Air infiltration
 - Air barrier
 - Penetrations

Rim joist: Air barrier
The thermal boundary at the Sill Plate:
- Bulk water
- Cladding
- Water-resistant barrier
- Air infiltration
- Air barrier
Sill Plate: Sill sealer

Conditioned basement

- The thermal boundary at a Conditioned Basement:
 - Bulk water
 - Foundation wall / Water proofing
 - Heat
 - Insulation
 - Thermal Alignment
 - Air infiltration
 - Foundation Wall

Basement: Waterproofing
Conditioned Basement: Insulation

Finished Basement: Rigid / Stud wall

Basement Slab

- The thermal boundary at a Basement Slab:
 - Bulk water
 - Class I Vapor Retarder (vapor barrier)
 - Air infiltration
 - Class I Vapor Retarder (vapor barrier)
 - Concrete Slab
Basement Slab: Vapor Retarder

Unconditioned Basement

- The thermal boundary at a Basement Ceiling:
 - Heat
 - Insulation
 - Thermal Alignment
 - Air infiltration
 - Subfloor
 - Concrete Slab

Unconditioned Basement: Ceiling Insulation
Sill Plate

- The thermal boundary at the Sill Plate:
 - Bulk water
 - Cladding
 - Water-resistant barrier
 - Air infiltration
 - Air barrier

Pen Test

- The thermal boundary at the Sill Plate:
 - Bulk water
 - Air infiltration
 - Insulation

Conclusions

- A thermal boundary carries many different responsibilities.
 - Water Barrier
 - Air Barrier
 - Thermal Barrier
- Not every component is needed at every critical area, but the pen test will help flush out weakness within the thermal boundary.
- This test should be performed during design along with plan reviews with various subcontractors.
This concludes The American Institute of Architects Continuing Education Systems Course.

Link to Certificate:

Join us next month on Tuesday, November 10th at 1pm for the webinar titled “Moisture Considerations for Insulated Building Assemblies.”